Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 233: 116489, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385417

RESUMO

Drylands are fragile environments that should be carefully managed to improve their quality and functions to achieve sustainable development. Their major problems involve low availability of nutrients and soil organic carbon content. Biochar effect on soil is a joint response of micro to nano sized biochar and soil characteristics. In this review, we attempt to carry out a critical analysis of biochar application to enhance dryland soil quality. Correlating the effects identified from its soil application, we explored the subjects that remains open in the literature. The relation of composition-structure-properties of biochar vary among pyrolysis parameters and biomass sources. Limitations in soil physical quality in drylands, such as low water-holding capacity, can be alleviated by applying biochar at a rate of 10 Mg ha-1 also resulting in beneficial effects on soil aggregation, improved soil porosity, and reduced bulk density. Biochar addition can contribute to the rehabilitation of saline soils, by releasing cations able to displaces sodium in the exchange complex. However, the recovery process of salt-affected soils might be accelerated by the association of biochar with another soil conditioners. This is a promising strategy especially considering the biochar alkalinity and variability in nutrients bioavailability to improve soil fertilization. Further, while higher biochar application rate (>20 Mg ha-1) might change soil C dynamics, a combination of biochar and nitrogen fertilizer can increase microbial biomass carbon in dryland systems. Other aspect of biochar soil application is the economic viability of scale-up production, which is mainly associate to pyrolysis process being biochar production the costliest stage. Nevertheless, the supplying of feedstock might also represent a great input on biochar final costs. Therefore, biochar-based technology is a big opportunity to improve fragile environments such as drylands, integrating sustainable technologies with regional development. Considering the specificity of application area, it might be a model of sustainable agricultural practices protecting the environment in a bioeconomic perspective.


Assuntos
Carbono , Solo , Humanos , Carvão Vegetal , Ecossistema
2.
Microbiol Res ; 264: 127161, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35987172

RESUMO

Soil desertification has a significant social, economic, and environmental impact worldwide. Mycorrhizal diversity remains poorly understood in semiarid regions impacted by desertification, especially in Brazilian drylands. More importantly, positive impacts of grazing exclusion on mycorrhizal communities are still incipient. Here, we hypothesized that overgrazing changes the structure of Arbuscular Mycorrhizal Fungi (AMF) community compared to native areas and, grazing exclusion is effective to restore the AMF community. Thus, we analyzed the status of AMF community in soils under desertification (overgrazing) and restoration (twenty-years of grazing exclusion) in the Brazilian semiarid. AMF-spores were extracted via humid decantation methodology, morphologically classified, and alpha diversity metrics were calculated. Soil samples were chemically, and physically characterized and multivariate statistical analyses were applied to verify the impact of soil degradation and restoration on AMF-community. Briefly, native, and restored areas presented higher contents of organic matter, phosphorus, microbial carbon, and ß-glucosidase activity. However, degraded soil showed higher Al3+, Na+, and bulk soil density values. The abundance of AMF spores was higher in restored soil, followed by degraded and native vegetation, and Shannon's diversity index was significantly higher in restored soils, followed by native vegetation. AMF-spores were classified into four families (Gigasporaceae > Acaulosporaceae > Glomeraceae > Ambisporaceae). Ambisporaceae was closed correlated with degraded soil, mainly with Al3+, Na+, and bulk soil density properties. On the other hand, Acaulosporaceae and Glomeraceae were positively correlated with native vegetation and restored soil, respectively, thereby improving Shannon index, richness, enzyme activity, and soil respiration. Thus, grazing exclusion, in long term, can be a good strategy to restore AMF-diversity in soils in the Brazilian semiarid.


Assuntos
Glomeromycota , Micorrizas , Brasil , Conservação dos Recursos Naturais , Fungos , Humanos , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...